Last updated: 2022-11-22
Checks: 6 1
Knit directory: viz-panel-maps/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R
Markdown file created these results, you’ll want to first commit it to
the Git repo. If you’re still working on the analysis, you can ignore
this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20221110)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 92bf67a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: README_files/
Untracked files:
Untracked: analysis/sketch-example.Rmd
Untracked: code/sketch-example.R
Untracked: renv/
Unstaged changes:
Modified: .Rprofile
Modified: analysis/index.Rmd
Modified: analysis/stylised-example.Rmd
Modified: renv.lock
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with
wflow_publish()
to start tracking its development.
For SoDa presentation
# sample data
df_data_in <- tibble::tribble(~source_code, ~value_in,
"x1111", 100,
"x2222", 30,
"x3333", 20,
"x4444", 80,
"x5555", 30,
"x6666", 40,
"x7777", 15
)
df_concordance <- tibble::tribble(~source_code, ~target_code,
"x1111", "A1",
"x2222", "B2",
"x2222", "B3",
"x3333", "C5",
"x4444", "C5",
"x5555", "D6",
"x5555", "D7",
"x6666", "D6",
"x6666", "D7",
"x7777", "D6"
)
(df_pm <- df_concordance |>
conformr::make_panel_map_equal(code_in = source_code, code_out = target_code, "weights"))
# A tibble: 10 × 3
source_code target_code weights
<chr> <chr> <dbl>
1 x1111 A1 1
2 x2222 B2 0.5
3 x2222 B3 0.5
4 x3333 C5 1
5 x4444 C5 1
6 x5555 D6 0.5
7 x5555 D7 0.5
8 x6666 D6 0.5
9 x6666 D7 0.5
10 x7777 D6 1
(data_out <-
conformr::use_panel_map(map = df_pm,
data = df_data_in, values_from = value_in,
from_code = source_code, to_code = target_code,
weights = weights, .suffix = "_out"))
# A tibble: 6 × 2
target_code value_in_out
<chr> <dbl>
1 A1 100
2 B2 15
3 B3 15
4 C5 100
5 D6 50
6 D7 35
# viz panel map
plt_panel_map <- function(pm, from, to, weighted){
require(dplyr)
require(ggplot2)
require(ggbump)
edges <- pm |>
transmute(from = {{from}}, to = {{to}}, weighted = {{weighted}})
## calculate positions for nodes
from_nodes <- distinct(edges, from) |> mutate(from_y = row_number())
to_nodes <- distinct(edges, to) |> mutate(to_y = row_number() - 1 + 0.5)
## generate df for ggplot
df <- edges |>
## generate mapping type/case variables
group_by(from) |>
mutate(n_dest = n()) |>
ungroup() |>
group_by(to) |>
mutate(n_origin = n(),
min_weight = min(weighted)) |>
ungroup() |>
mutate(value_case = case_when(n_dest == 1 ~ "one-to-one",
n_dest > 1 ~ "one-to-many")) |>
left_join(tribble(~value_case, ~line_type, ~font_type,
"one-to-one", "solid", "bold",
"one-to-many", "dashed", "italic"),
by = "value_case") |>
mutate(from_case = case_when(n_origin == 1 ~ "one-from-one",
n_origin > 1 ~ "one-from-many",
n_origin < 1 ~ "ERROR! origin codes < 1"),
dest_case = case_when(min_weight < 1 ~ "contains split",
min_weight == 1 ~ "aggregation only",
min_weight > 1 ~ "ERROR! weight > 1")
) |>
## add y-coordinates
left_join(from_nodes, by = "from") |>
left_join(to_nodes, by = "to") |>
## add x-coordinates
mutate(from_x = 0,
to_x = 5) |>
## give each from-out instruction a unique id
mutate(idx = row_number())
plt_uw <- df |>
ggplot(aes(x = from_x, xend = to_x, y = from_y, yend = to_y, group = idx)) +
## edges as sigmoid curves with line type
geom_sigmoid(aes(linetype = I(line_type))) +
# to/from nodes
scale_y_reverse() +
geom_text(aes(x = from_x - 0.5, label=from, fontface=I(font_type))) +
geom_label(aes(x = to_x + 0.5, y = to_y, label=to, fill = dest_case)) +
# edge labels
geom_label(data = filter(df, value_case == "one-to-many"),
aes(x = (((from_x + to_x) / 2) + to_x) / 2,
y = to_y,
label = weighted)) +
geom_label(data = filter(df, value_case == "one-to-one"),
aes(x = (from_x + to_x) / 4,
y = from_y,
label = weighted)) +
# theme
scale_fill_manual(values = wesanderson::wes_palette(n = 4, name = "GrandBudapest2")) +
scale_color_manual(values = wesanderson::wes_palette(n = 4, name = "GrandBudapest2")) +
cowplot::theme_minimal_grid(font_size = 14, line_size = 0) +
theme(legend.position = "bottom",
panel.grid.major = element_blank(),
axis.text.y = element_blank(),
axis.text.x = element_blank(),
plot.background = element_rect(fill = "white")) +
labs(x = NULL, y = NULL, fill = "Output Relation")
return(plt_uw)
}
df_pm |>
plt_panel_map(from = source_code, to = target_code, weighted = weights)
Loading required package: dplyr
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
Loading required package: ggplot2
Loading required package: ggbump
Sorted by target_code
df_pm |>
dplyr::arrange(target_code)
# A tibble: 10 × 3
source_code target_code weights
<chr> <chr> <dbl>
1 x1111 A1 1
2 x2222 B2 0.5
3 x2222 B3 0.5
4 x3333 C5 1
5 x4444 C5 1
6 x5555 D6 0.5
7 x6666 D6 0.5
8 x7777 D6 1
9 x5555 D7 0.5
10 x6666 D7 0.5
sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
locale:
[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggbump_0.1.0 ggplot2_3.3.6 dplyr_1.0.10
loaded via a namespace (and not attached):
[1] Rcpp_1.0.9 highr_0.9 pillar_1.8.1
[4] compiler_4.2.1 bslib_0.3.1 later_1.3.0
[7] jquerylib_0.1.4 git2r_0.30.1 workflowr_1.7.0
[10] tools_4.2.1 digest_0.6.30 gtable_0.3.1
[13] jsonlite_1.8.2 evaluate_0.16 lifecycle_1.0.3
[16] tibble_3.1.8 pkgconfig_2.0.3 rlang_1.0.6
[19] DBI_1.1.3 cli_3.4.1 rstudioapi_0.13
[22] yaml_2.3.5 xfun_0.31 fastmap_1.1.0
[25] withr_2.5.0 stringr_1.4.1 conformr_0.0.0.9001
[28] knitr_1.39 generics_0.1.3 fs_1.5.2
[31] vctrs_0.4.2 sass_0.4.2.9000 cowplot_1.1.1
[34] grid_4.2.1 rprojroot_2.0.3 tidyselect_1.2.0
[37] glue_1.6.2 R6_2.5.1 fansi_1.0.3
[40] wesanderson_0.3.6 rmarkdown_2.14 farver_2.1.1
[43] magrittr_2.0.3 scales_1.2.1 promises_1.2.0.1
[46] htmltools_0.5.2 assertthat_0.2.1 colorspace_2.0-3
[49] httpuv_1.6.5 labeling_0.4.2 utf8_1.2.2
[52] stringi_1.7.8 munsell_0.5.0